The CIA Mystery: Collision-Induced Absorption in Cool White Dwarfs

Madison Bernice Louisiana Tech University Advisor: Dr. Mukremin Kilic OU Summer REU Program July 2024

White Dwarf Age Dating

- Many applications require accurate WD model atmospheres to reliably infer WD ages:
 - Determining the ages of individual stellar populations^{6, 7}
 - Reconstituting the formation history of our Galaxy⁴
 - Calibrating models for M, L, and T dwarf companions¹¹
 - Tracing back the chemical evolution of our Galaxy¹⁰

Puzzle measures approximately 28 in. x 20 in. (70 cm x 50 cm) L'UNIVERS • 1000 morceaux • Dimensions approximatives du casse-tête : 70 cm x 50 cm

Current Issues

- 10% (400 K) uncertainty on T_{eff} implies 1 Gyr error on cooling age
- Recent analyses differ by more than 1000 K^{1, 3}
- Poor agreement between models and observations
- Atmospheric compositions can only be inferred from a detailed fit to their SEDs
- Difference in cooling time between He-dominated and H-dominated atmosphere is of the order 2 Gyr

Figure 1: Best fit (in red) to the SED of LHS 3250, a typical ultracool WD and one of the three targets. The error bars show the BVRIJHK and Spitzer 3.6 – 8 µm photometry.

Not so cool after all...

- Ultracool WDs might be in the T_{eff} = 4000 5000 K range¹ instead of T_{eff} = 3000 4000 K range⁵
 - Updated physics of models²
 - Explored effect of changing collisioninduced absorption (CIA) opacities
- Found much better fits using older CIA calculations⁹
- Predictions of the locations of the $\rm H_2$ absorption features differ greatly

Figure 2: Model SEDs of ultracool WDs for two different choices of CIA opacities. (Bergeron et al. 2022)

Goals

Obtain first IR spectra of ultracool WDs using **NIRSpec and** MIRI

Utilize IR spectra to unveil & resolve CIA features

Settle the debate on the very nature of ultracool WDs

NIRSpec and MIRI Capabilities

• NIRSpec:

- 0.6 5 µm wavelength range (lowresolution spectroscopy)
- 1 5 µm wavelength range (mediumresolution spectroscopy)
- Multi-object observation capability

• MIRI:

- 5 28 µm wavelength range
- Astrophotography
- Medium-resolution spectroscopy

Infrared sensitivity of Webb's instruments			
wavelength (in microns)	11 5		30
	FGS/ NIRISS		
	NIRSpec	MIRI	
	NIRCam		
	Near Infrared	Mid-Infrared	
Visible The light we can see	Revea Coo Dus	ls: Reveals: ler red stars Planets, comets, and asteroids t is transparent Dust warmed by starlight Protoplanetary disks	

Figure 3: Infrared sensitivity of Webb's instruments, taken from webb.nasa.gov.

Our Targets

- LHS 3250: The first "ultracool" white dwarf discovered⁸. Little progress made in constraining its temperature, mass, and age. Resolving the location of its absorption band at 4 7 μm will allow differentiation between competing CIA models.
- J1922: Shows an atomic absorption line in its visible spectrum¹². Na doublet can be used to pinpoint its atmospheric density and mitigate a source of uncertainty for the model atmospheres. Vastly different T_{eff} for this star^{1, 3}
- GD 362: Shows potential emission features near 6 µm that could be due to water vapor. Unique WD with heavily polluted atmosphere and an infrared excess, indicating a surrounding dusty disk likely formed from disrupted planetary material.

What has been done so far?

Figures 4 (left) and 5 (right): Optimally extracted spectrum of the two dithers for the J1922 target (red) compared with the x1d pipeline product (blue). Note the emission feature near 2.4 µm.

- JWST uses the Pipeline to calibrate and process data to produce third stage final products.
- Optimal extraction uses stage 2 data products from the pipeline, but gives control over third stage output.

Optimally Extracted Spectrum: LHS 3250

Figure 6: Optimally extracted spectrum of the first dither for GD 362.

Figure 7: Optimally extracted spectrum of the second dither for GD 362.

Optimally Extracted Spectrum: GD 362

Figure 8: Optimally extracted spectrum of the first dither for GD 362 (before normalization).

Figure 9: Optimally extracted spectrum of the first dither for GD 362 (after normalization).

Optimally Extracted Spectrum: GD 362

Combined Spectrum: GD 362

Blackbody Curve Fitting: GD 362

References

[1] Bergeron et al. 2022, ApJ, 934, 36 [2] Blouin et al. 2018, ApJ, 863, 184 [3] Elms et al. 2022, MNRAS, 517, 4557 [4] Fantin et al. 2019, ApJ, 887, 148 [5] Gianninas et al. 2015, MNRAS, 449, 3966 [6] Hansen et al. 2007, ApJ, 671, 380 [7] Hansen et al. 2013, Nature, 500, 51 [8] Harris et al. 1999, ApJ, 524, 1000 [9] Jorgensen et al. 2000, A&A, 361, 283 [10] Kaiser et al. 2021, Science, 371, 6525

[11] Meisner et al. 2020, ApJ, 889, 123[12] Tremblay et al. 2020, MNRAS, 497, 130